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AXISYMMETRIC  EXPANSION OF A PLASMA IN A MAGNETIC 

NOZZLE INCLUDING THERMAL CONDUCTION 

by Eddie L. Walker  and  George R. Seikel 

Lewis  Research  Center 

SUMMARY 

The  axisymmetric  expansion of a hot-electron,  cold-ion  plasma  in  the  magnetic 
nozzle  produced by a pair of Helmholtz  coils is calculated  with  thermal  conduction in- 
cluded. The  plasma is assumed  fully  ionized  (in  the  sense  that  neutrals  have no signif- 
icant  effect on the  expansion)  and  the  electron Hall parameter is assumed  to have  an ef- 
fective  constant  value.  The  analysis is based on  the  reduction of the partial differential 
kinetic  equations  to  ordinary  differential  equations which are valid  near  the axis of sym- 
metry.  The  resulting  nonlinear  coupled  equations were solved  numerically by starting 
far downstream  with  the  leading  terms of an  analytic  asymptotic  solution  and  working up- 
stream.  The  numerical  results  depend on two parameters: (1) the  location of the on- 
axis sonic point,  and (2) a dimensionless  magnetic  field p, which  involves  the  ratio of 
the  maximum  value of the  applied  magnetic  field  to  the  effective  electron Hall  parameter. 

The  analysis  predicts  the  spatial  variation  along  the axis of symmetry of the ion 
flow velocity,  electron  temperature,  plasma  potential,  and  electron  number  density. 
Also presented is the  dependence  on p of the spatial variation of the  on-axis ion flow 
velocity  and  electron  temperature.  The  analysis  appears  to  be  consistent  with  available 
experimental  data. 

The f i n a l  results  give  the  on-axis  ratio of the  directed ion exhaust energy  to  the 
maximum  (upstream)  electron  thermal  energy as a function of the  sonic point location 
and  the  dimensionless  magnetic  field 6. The  effect of including  thermal  conduction is 
striking;  the  energy  ratio  attains  values  more  than  an  order of magnitude greater  than 
that for  an  adiabatic  expansion. 

The  analysis is valid for a finite  range of the  parameter p. The  largest  value of 
p is limited by the  stated  assumption that the ion temperature is negligible,  while  the 
smallest  value is limited by the  implicit  assumption of small  electron  cyclotron  radii. 



INTRODUCTION 

Those  performing  research on  magnetoplasmadynamic (MPD) arc thrusters have 
for a number of years  been  investigating  the  steady-state  acceleration of plasma  in a 
magnetic  nozzle. In an  early  paper  (ref. 1) the following model of this  process was de- 
duced for low-density  dc  discharge  thrusters (i. e., long  ion  mean free path): 

The  electric  power of the  discharge is primarily  added  to  the  random 
energy of the  plasma  electrons.  The  energetic  electrons  ionize  the 
propellant,  and, as the  plasma's  electron gas expands out of the  de- 
vice, its random  electron  energy is converted  to  directed  energy. 
Since there  can  be no divergence of current,  however,  the  electrons 
drag  the  ions  along.  Physically  this is accomplished by an axial 
electric  field that the  plasma  itself  builds.  This  field  retards  the 
electrons'  expansion,  accelerates  the  ions,  and  causes  an  azimuthal 
electron  current  to flow that provides  the  electromagnetic  reaction 
force on the  accelerator.  The  energy  added  to  the  ions is at the  ex- 
pense of the  random  electron  energy.  The  expansion  process is con- 
trolled by the  magnetic  nozzle  action of the  spatially  varying  magnetic 
field. 

The  existence of this  plasma  generated axial electric  field was supported by the ex- 
periments of Domitz  (ref. 2) and  the  research of Meyerand  et al. (ref. 3). 

In a later paper (ref. 4) it was shown that on the axis of symmetry  this axial elec- 
tr ic  f ield was given by the  gradient of the  electron  pressure  divided by the  electron 
charge  density.  Subsequent  experiments by Bowditch (ref. 5) show that this  relation  for 
the axial electric  field was applicable  in  the  exhaust  field of a fully  ionized,  low-power 
thruster.  Hence,  his  results  experimentally  substantiated  the  proposed  acceleration 
model. 

A detailed  examination of the data of reference 5 shows,  in  addition, that the  plasma 
expansion  process is not adiabatic.  The  exhaust  ion  energy  measured is much  higher 
than  one would obtain in an  adiabatic  expansion. And the  electron  temperature  does not 
spatially  decrease as rapidly as one  would expect  in  an  adiabatic expansion. 

For  the  electron  temperature  range of 5 to 10 electron  volts  measured by Bowditch, 
a plasma is a good thermal  conductor.  Thus,  thermal conduction  can  be  important. 

The  object of this  study is to  analyze  the  expansion of a plasma in a magnetic  nozzle 
including  thermal conduction. Specifically,  the  expansion of a fully ionized  plasma con- 
taining hot electrons  and  cold  ions is examined in the  magnetic  nozzle  produced by a 
'Helmholtz  set of coils.  (The  phrase "fully  ionized''  simply  means  here that any  neu- 
trals which may  be  present play no appreciable  role  in  the  expansion.)  The  analysis is 
restricted  to  the  vicinity of the axis of symmetry.  The set of equations  to be solved 
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includes  the  electron  and  ion  continuity  and  momentum  equations, Maxwell's equations 
and  an  electron  energy equation. As  indicated  in  reference 6,  the  solutions  can be  used 
in an  energy  balance which leads  to  setting  upper bounds  on  the  potential  performance of 
applicable  MPD arc  thrusters.  Finally,  the  limits on  applications of the  analysis are 
discussed  along with the  results. 

THEORETICAL ANALYSIS 

In this  section Maxwell's equations,  the  electron  and  ion  continuity  and  momentum 
equations,  and  the  electron  energy  equation are combined  to  obtain two  coupled  nonlinear 
ordinary  differential  equations  for  the  electron  temperature  and ion flow velocity.  The 
equations are valid for  points  near  the axis of symmetry,  with  the  effective  electron 
Hall parameter  and  the  magnetic  field  appearing as parameters. 

Assumptions 

The  coordinate  system  for  the  plasma  expansion is shown in  figure 1. In order  to 
reduce  the  usual  kinetic  equations  to  ordinary  differential  equations it is assumed that 
each  variable of interest  can be  expanded  in a power ser ies  in the  radial  coordinate r 
near  the axis of symmetry.  Then  for  instance,  the  electron  temperature  Te is given by 

T = T (r, z) = Te (0)  (2) + rTil)(z) + r2Tf)(z) + e e  

so that the  electron  temperature on the axis is simply 

Te(r = 0, z) = Te  (z) (0) 

By expanding  each  variable  in  this  manner,  substituting  the  series into the  partial  differ- 
ential  kinetic  equations,  and  comparing  coefficients of like  powers of r,  ordinary  differ- 
ential  equations are obtained for  the  electron  temperature  and ion flow velocity on the 
axis. 

In  deriving  the f i n a l  equations,  the  following  additional  assumptions are made  (sym- 
bols are defined  in  appendix A and all equations  and  quantities are in S. I. units): 

(1) Steady state exists, a/at = 0. 
(2) Neutrals have no significant  effect  on  the  expansion  (equivalent  to  assuming a 

fully  ionized  plasma). 
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(3) The  species  pressures  are  scalar;  that is, viscous  effects are negligible. 
(4) Ti << Te. 

(5) Quasi-charge  neutrality  exists on the axis, N r )  = Ni (O) . 
(6) There is no axial current  density on the axis, JLo) = 0. 
(7) The  on-axis  induced  magnetic  field is negligible  compared  to  the  applied  field. 

(Appendix B contains a discussion of the  applied  magnetic  field.) 
(8) The  electron  inertia  term  in  the  electron  momentum  equation is neglected. 
(9) Inelastic  collisions are negligible. 

Kinetic  Equations 

The  conduction  current  density is given by 

- 
J = q(NiZi - N, e e  Z ) 

From  the  assumptions 

and 

it then  follows  that 

Continuity equations. - The  electron  continuity  equation is 

V (NeCe) = 0 

or 
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from which, 

where it has been  assumed that Nf) # 0. Completely  analogous results are found for 
the  ion flow velocity  coefficients: 

Momentum equations. - The  electron  and ion momentum  equations are,  respectively, 

where  the ion scalar  pressure  and  the  gravitational  acceleration  have been  neglected. 
Since Eo = 0 (see appendix C ,  eq. (C15)), the  6-component of the  sum of equations (9) 
and (10) is 

Nimi (5 V 5 )  e - (JzBr - JrBz) = 0 (11) 

Since  Br is of order r and Jr is of order r (see  eqs. (C10) and  (C24),  respec- 
tively), it follows  that,  to first order  in r ,  

2 

Now from  equation (12) it is possible  to show that u. is of order r . First, using 
the  assumption 3/36 = 0 yields 

2 
196 
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Then, the substitution of the r-expansions  into  equation (13) and the use of equation (12) 
give 

where the fact that ui0) = 0 has been  used.  (The  azimuthal component of velocity  must 
vanish  on  the axis.) Substituting the result (8d) into  equation (14) yields 

120 

dz  dz 

The  solution of equation (15) is simply 

where K is a constant.  The  ions are  assumed  to be monoenergetic,  being created at 
some plane  z = z* with no azimuthal  velocity: 

It then  follows  from  the  expansion 

that 

and  hence the constant K in  equation (16) must  vanish,  assuming  that 
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II 

Finally, 

The  r-component of the  ion  momentum  equation (10) is 

-qNi(Er + ui, - ui, zBe) = - I e, 1 (19) 
ar r az 

which to first order in r becomes 

where  equations  (8c), (18), and  the  results of appendix C, equations (C5) and (C20), have 
been  used.  Substituting  the results (8d) and (C21) into  equation (20) gives 

The  z-component of the  electron  momentum  equation (9) is 

which, to  zero  order  in r ,  is 

dz 
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The  z-component of the sum of equations (9) and (10) is 

au. 
l , z  + U. - aui2 ') + 3 + q(Ne - Ni)Ez - (JrBe - JOBr) = 0 (24) 
ar l,z az az 

which to  zero  order  in r becomes 

Electron  energy  equation. - The f ina l  kinetic  equation  to  be  considered is the  elec- 
tron  energy  equation 

2 i i  * V P e + - P e V - z e + V ~ Q  5 = I E  
- 

2 e  2 e 

where Qe and IE are, respectively,  the  electron  heat flow and  the  electron  energy 
collision  integral.  To  zero  order in r, equation (26) becomes 

-c 

(As is shown in  appendix E, the  radial  electron  heat flow vanishes on the axis, so that 
Q(O) = 0.) Substituting  equation (8b) into (2?) gives 

e, 

In order  to  close  the set of equations (5), (6) (21) ~ (23),  (25),  and  (28), it remains 
to  determine  the  collision  integral  coefficients I(1) , I(') , I(') and  the  electron  heat 
flow coefficients  Qe, z, (0) (1) e, e , z  E 

Qe, r* 

Transport  Coefficients 

Momentum  collision  integral  coefficients. - The  diffusion  Mach  number,  which is 
defined as 
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[ 2k ( 2i + :)] 'I2 

is zero  on  the axis of symmetry by virtue of equations (6), (8a),  (8c),  and  the  fact  that 
the  azimuthal  components of the  electron  and ion flow velocities  must  vanish at r = 0. 
From  this fact it is reasonable  to  assume that E is small  in  the  vicinity of the axis of 
symmetry.  Then,  based  on  the well-known Grad-thirteen  moment  approximation  for  the 
electron  and  ion  distribution  functions,  the  electron  momentum  collision  integral is, to 

first order  in E and  in  the  dimensionless  heat  flows Qe /Ped- and 

4 

1 e = m e N e v ei [(Ci - Ce> d e  

Here vei is the  effective  collision  frequency  for  transfer of momentum  between  elec- 
trons and ions, and y is a dimensionless  number of order unity  involving the  inter- 
particle  force law (for  the  usual  Coulomb  force, y = 0.6). The  derivation of equation 
(29) is a straightforward but tedious  process;  the  details  can be found in  reference 7. 
The  result  depends  in  part  on  the  assumption that Qi/mi << Qe/me. 

Substituting  the  results  (eqs. (5), (6), and (8a) to (8d))  into  equation (29) yields 

The result (30b) depends  on  the  fact  that Q(O) = 0, as shown in appendix D. e, r 
Energy  collision  integral  coefficient. - From  reference 7, the  electron  energy 

collision  integral at r = 0 is 

9 
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where  note has been  made of the fact that the  diffusion  Mach  number E is zero on the 
axis of symmetry,  Then,  since TY) << TS',  expression (31a) becomes 

Electron heat flow ~~ coefficients. - Based  on  the  same  assumptions  made  in  the dis- 
cussion of the momentum  collision  integral  coefficients, the z-component of the  elec- 
tron  heat flow to  order  zero  in r is 

where is a dimensionless  number involving the interparticle  force law (for  the 
Coulomb force, $ E 1.86). The  r-component  coefficients of Ge are 

The results (32a) to (32c) are derived  in  appendix D. Implicit  in  their  derivation is the 
use of the "transport  approximation"  wherein the mean  time  between  collisions for the 
electrons  and the electron  mean  free path are assumed  to be small  compared  to,  respec- 
tively, the characteristic  time and distance  intervals for significant  changes  in  the non- 
Maxwellian part of the  electron  distribution function.  In expression (32c) the electron 
cyclotron  frequency is given by 
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and 

1 
7 =- I 

e v  ei 
(34) 

It is noted  that  equation (32c) contains two new unknowns, TL2) and ue, (l) *. Hence,  in 
order  to  close  the set of equations (5), (6) , (2l) ,  (23),  (25),  and  (28),  expression (32c) 
will not be  used.  Instead,  the  following  assumption is made: in any r -z  plane  the 
electron  heat flow is parallel  to  the  electron flow velocity 

o r  

Then  from  equations (8a) and (35) , it follows  that 

The  effective  electron Hall parameter. - To complete  the  evaluation of the  necessary 
collision  integral  and  heat flow coefficients only requires  the  determination of the  colli- 
sion  frequency v(O) In preliminary  calculations, it was found that use of the  classical 

expression  for v:!) (see eq.  (3.94) of ref. 7) gave results which were  in  serious  disa- 
greement  with  experimental data. As a result of this  the classical expression  for vei (0) 
was  replaced by an effective  value.  In  particular,  the  following  assumption  was  made: 
the  electron Hall parameter  can  be  approximated by an  effective  value  which is constant, 
at least near  the axis of symmetry, 

ei 
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where 

This  assumption is based on  an analysis by Solbes (ref. 8) which predicts  (using  quasi- 
linear  plane-wave  analysis)  that a saturation  in  the  effective Hall parameter  can  result 
from  electrothermal  instabilities. In reference 8, Solbes  also  compares  his  analysis 
with MHD generator  experimental  data  and  obtains good agreement.  The  assumption 
(37) also  permitted an analytic  asymptotic  solution (i. e., large z); no such  solution 
could  be found when the  classical  expression  for v$) was used. 

Final  Equations 

When expressions (32a) and (36b) a r e  used,  the  momentum  collision  integral  coeffi- 
cients  (eqs. (30a) to (30c)) become,  respectively, 

Then, when equations (5), (6),  (8b),  (8d), (C21), (31b),  (32a),  (36b),  (37),  and  (39a) to 
(39c) are used,  equations (2l) ,  (23),  (25),  and (28) become,  respectively, 
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- d (NkT,) + qNE = - - 5 Y  - Nd(kTe) 
dz 2 X dz 

m.Nu - +- (NkTe) = 0 du d 
dz dz 

(42) 

3  d(kTe) d l n N  5 kTe d(kTe) d In u  d 

(:e  ::e)] [ R  uz dz  dz 
-u"- 
2 dz 

+" " 

+"=o 3qB kTe 

where 

T = Te (0) e 

E = E, (0 )  

B = B(r = 0,z) 

w -- - qB 

me 
e 

(43) 

Equations (40) to (43) constitute  four  independent  equations  in  the  four unknowns N, 
u, Te,  and  E;  the  effective  electron Hall parameter W ~ T ~  and  the  applied  on-axis  mag- 
netic  field (which is approximately  equal  to B) are  assumed  to be  specified.  The  elec- 
tr ic  f ield E  and its derivative  dE/dz  can  be  eliminated by combining  equations (40) 
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and (41). The  number  density N, which occurs  throughout  the  equations  in  the  form 
d ( h  N)/dz,  can  be  eliminated by using  equation (42). The final equations for  the elec- 
tron  temperature on the axis Te  and  the  ion  flow  velocity  on  the axis u are then 

+" 5 y - -  miu2\ "+" d In u d(kTe) miu d2U 
2 3  

2 %  [ kTe 1 dz  dz kTe dz 2 

2 
ln(kTe) 2 miu du (WeTe) [ :; u d In B  d In kTe d(kTe) 

U 
dz 5 kTe  dz  PqB 

+" - +- +-- 
dz dz ) dz 

d2(kTe)1 +- 6 qB = o  

For both convenience  and a reduction  in  the  numerical  calculations,  equations (45) and 
(46) can be  put into dimensionless  form. It is convenient  to  nondimensionalize  the ion 
velocity by the  final  exhaust  velocity,  the  electron  thermal  energy by the  final ion di- 
rected  energy,  and  the  distance by the  radius a of the  magnetic  field  coils (fig. 1). 
Thus  letting 
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c =" 5Y 
3 %  

equations (45) and (46) take, respectively,  the following dimensionless  forms: 

- 2(u')2 [; + (5) (1 +;$)I} 

where all derivatives  are with respect  to  the  dimensionless  distance  x  (e.g., 
7" = (d2T/dx )). Using assumption (7) and expressions (B2) and (B3) for  the  applied on- 
axis magnetic  field,  equation (49) becomes 

2 

where 

is a dimensionless  magnetic  field,  and 

- 3/2 - 3/2 
F = (1 + x 2 )  -I. [l + (1 +x)2] 
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In expression (51a) Bmax is the  maximum  value of the  applied  magnetic  field,  occur- 
ring  on  the axis of symmetry midway  between  the  two  field  coils (fig. 1). 

Equations (48), (50), and (51) thus  comprise  the  dimensionless set of nonlinear 
equations  to  be  solved. 

NUMERICAL  SOLUTIONS 

To  the  authors' knowledge equations (48), (50),  and (51) do not admit  analytic  solu- 
tions.  However,  it is possible  to  obtain  asymptotic  analytic  solutions  for  large x by 
expanding T and U in  power series  in  the  variable x-'. These  solutions  represent 
relations  between  the  starting  values  used  for  the  numerical  solutions.  Then,  instead 
of needing  four  initial  values (i.e., T, U, P ,  UT), it is only necessary  to  specify two 
initial  values  in  order  to begin the  numerical  solution at some point far downstream. 

In addition  to  deriving  the  asymptotic  analytic  solution in this  section,  the  numeri- 
cal  procedure is also  discussed. Included  in this  discussion is the way in  which  experi- 
mental data were  used  to  estimate  representative  values of the  various  parameters  in 
the  problem.  This  eliminated  the  potentially  difficult  problem of hunting numerically 
for  values of these  parameters  that would lead  to  meaningful  solutions. 

Asymptotic  Analytic  Solutions 

The  analytic  solutions  for  large  x a r e  based on the  following ser ies  expansions: 

*1 A2 A3 
x x2 x3 

T="+-+"+* . 

There  are  no zero  order   terms  in  expansions (52a) and (52c) since  Te (and  hence T) 

and N are  assumed  to  vanish as x approaches  infinity.  The  zero  order  term  in (52b) 
is obvious since U(=u/uW) approaches unity as x approaches  infinity.  In  general,  the 
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nth term of a series such as equation (52a) could be  assumed  to  be of the  form 

AnX 

the  lowest  order  terms  in  x-l  to  zero  yield 

-"-Y2 
; however,  in  appendix E it is shown that here y2 must  be  zero. 

Substituting expressions (52a) and (52b) into  equation (48) and  equating  the sum of 

for which there are two solutions: 

Only one of these  solutions is admissible.  To  see  this,  reference is made  to  equation 
(42),  which  in dimensionless  form is 

3NUU' + NT' + TN' = 0 (55) 

Then  to  lowest  order  in x-', 

D1(3B1 +2A1) = 0 (56; 

From  the  results (54a) and  (54b), it follows  that 

Dl = 0 ( 57) 

Equation (55) then  yields  to  lowest  order  in  x-l 

so that 

provided  that D2 f 0. (If D2 = 0, both eqs. (54a) and (54b) are incompatible  with eq. 
(55) and no solution  exists.) 
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Substituting  expansions (52a) and (52b) into  equation (50) and  equating  the sum of the 
lowest  order  nonvanishing  terms  in x-' to  zero  gives 

Substituting  equation (59) into (60) yields 

A 2 - 3  --?(:- B1) + p  

Then,  from  equations (59) and (61) the  asymptotic  solutions (52a) and (52b) become, 
respectively, 

B1 U = l + -  
X 

The  higher  order  coefficients (A3, B2, etc.) could be  determined  in a similar  manner  in 
te rms  of B1 and p; however,  the  algebra  quickly  becomes  prohibitive.  Moreover, it 
is anticipated  that  the  truncated  series (62a) and (62b) will  be  adequate  for  the  purpose 
of starting  the  numerical  solution. 

From  equations (62a) and  (62b), the first derivatives are, in truncated  form, 

These  results  assume, of course,  that  the  asymptotic  series (52a) and (52b) can be 
differentiated  term by term. 
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Numerical  Procedure 

Assuming that equations (62a) to (62d) are sufficiently  accurate  expressions  for 
large x, the  numerical  solution  can  be  started  provided  the  coefficient B1 is known 
( p  is treated as a parameter).  For a given p and an  arbitrary  value of  B1, equations 
(48) and (50) are solved  numerically  using  equations (62a) to (62d) as starting  values and 
working  upstream  (i.e.,  decreasing  values of x). The  quantities  obtained are xM, the 
value of x for which the  Mach  number of the  flow is unity,  and 

For  each  value of the  parameter p two curves  are obtained,  one  with xM as a function 
of  B1 and  one  with 1 / ~ ~ ~  as a function of  B1. From  these sets of curves, two f a m -  
ilies of curves are obtained  showing (1) the  dependence of 1 / ~ ~ ~  on xM for  fixed 
values of p,  and (2) the  dependence of 1 / ~ ~ ~  on p for  fixed  values of xM. Finally, 
by repeating  the  latter set of calculations, but with the  electron  energy  collision  integral 
included, it is possible  to  determine  an  upper  limit  on p beyond  which the  analysis is 
no longer self- consistent. 

As indicated  previously,  the  quantity 1/'rmax (eq.  (63)) is the  primary  goal of this 
analysis  since it gives  the  ratio of the  final  (downstream)  ion  directed  kinetic  energy  to 
the  maximum  (upstream)  electron  thermal  energy. 

Starting  calculations. - In order  to begin  the  numerical  solution  some  estimate of 
the magnitude of El for a given p is needed.  Such an estimate  can  be  obtained  from 
the  measurements of reference 5. In that reference, 

a = 3. 6X10-2 meter  (644 

= 2.5~10  Tes la  -2 
Bmax 

mi = 6.68X10-26 kg  (644 

The final ion  flow velocity, u,,  of reference 5 can  be  calculated  from  the z-component 
of the  ion  momentum  equation  which is simply  equation (42) minus  equation (41): 
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mi d(u2) - dV 5 y d m e )  
" - - q- +"- 
2  dz  dz 2% dz 

where V is taken as the  on-axis  plasma  potential of reference 5 (i. e., E = E(') = 

- dV/dz). Integrating  equation (6 5) gives 
Z 

At the  calorimeter  survey  plane of reference 5, the following measurements were made: 

z = 0.14 meter (6 7 4  

kT 
2 = 5.2 volts 

9 

The  operation of substituting  equations (67b) to (67d) into  equation (66) and  taking 
y = 0.6, P = 1.86 (these  values are those  for a fully  ionized  gas as given  in  appendix D) 
yields 

2 m.u 
" O3 - 94 volts 

2q 

where it has  been  assumed  that V, = 0 inasmuch as the  plasma  potential of reference 5 
is measured  relative  to  the  surrounding  tank walls of the  experiment. If the  ions were 
completely  collision-free,  the  result (68) would be  replaced by the  simple  sum of (67b) 
and (67d), o r  98  volts;  the last term on  the  right  hand side of equation (66), which ar ises  
from  the  electron  momentum  collision  integral,  accounts  for  the  difference. 

From  the  result (eq. (68)), 

u, = 2.12~10  m/sec 4 
(69) 
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Then  from  equations (62b), (64a),  (67a),  (67b),  and  (68), a rough  estimate of B1 is 

It should  be  emphasized  that (70) is only an estimate  inasmuch as there is no assurance 
apriori  that  the  calorimeter  survey  plane of reference  5 is sufficiently far downstream 
to  justify  the  use of the  truncated series (eq. (62b)). This  estimate is adequate, how- 
ever,  since all that is required  here is some  rough  idea of where  to begin  the  afore- 
mentioned  numerical  solution  scheme,  that is, what reasonable  value of B1 is needed 
for a given p value. 

The  appropriate  value of p is found by substituting  equations (64a) to (64c)  and (69) 
into  expression  (51a), 

B =  5.  3X10-2 

Substituting  equations (64a), (67a), (70), and (71) into  equation (62a) gives 

T = 0.104 + 3 . 5 2 ~ 1 0 - ~  

so that  from  equation  (68), 

For W ~ T ~  2 1, the result (eq. (72))  gives  the  following  range f o r  the  electron  tempera- 
ture at the  calorimeter  survey  plane: 

6.5  volts <- 5 6.72 volts kTe 
9 

This  range  differs  from  the  measured  result (eq.  (67c)) by at most 30 percent. Part of 
this  difference is undoubtedly due  to  the  fact  that  the  calorimeter  survey  plane of refer- 
ence  5 is not sufficiently far downstream  to  justify  the use of either of the  truncated  se- 
ries (eqs. (62a)  and  (62b)). Nevertheless,  the  result (eq. (73)) is sufficiently  accurate 
to  permit  the  use of equations (70) and (71) as a "starting" point for  the  numerical  solu- 
tion  scheme  previously  outlined. 
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As various  values of B1 and p are used  some  idea of the  starting  value of x is 
required. In order  that  the  asymptotic  starting  solutions  (eqs. (62a) to (62d)) be reason- 
ably  accurate it is necessary  that  the  starting  value x = x. be large enough to  make 
the  lowest  order  terms dominant. To accomplish  this  the  following  constraints are im- 
posed on equations  (62a)  and (62b): 

-B1 

xO 

- < 0.05 - 

that is, 

x0 2 -20B1 = w1 

- q g  - B l )  

3x0 
2 (:)- 

I <0.05 

that is, 

X 0 -  >-(;- 20 3 3 Bl) = w 2  

and 

2 
< 0.05 

that is, 

x > - 2 o p = w  
0- 

B1 
3 

(Note that B1 must be negative.)  The  requirement  that  the  magnitude of each  higher 
order  term  in  equations (62a)  and (62b) be less  than 5 percent of the  corresponding 
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dominant term is of course  arbitrary. However,  such a requirement  should  certainly 
ensure  that  these  asymptotic  starting  solutions are reasonably  accurate.  The  starting 
value of x is then  taken  to  be 

The  derivatives  (eqs. (62c)  and  (62d)) are then  automatically  accurate  expressions pro- 
vided  that  the  asymptotic series can  be  differentiated  term by term. 

Numerical  integration. - Equations (48) and (50) were solved  numerically on an IBM 
7094 electronic  digital  computer  using a fourth  order Runga-Kutta  technique (see, e. g., 
ref. 9). In order  to  enhance  the  accuracy of the  results, a variable  step  size, Ax, was 
used. For the  mth  computation  the  step  size w a s  

with an  initial  step  size of (Ax)o = -0.01.  The  constraint  (eq.  (75)),  which  tends  to  main- 
tain AU at approximately  0.2  percent of the final value of U, namely unity, is again 
arbitrary. It should,  however,  certainly  keep  the  truncation e r r o r  of the  Runga-Kutta 
scheme at a reasonably  small  value  while  also  reducing  the  computer  run  time.  The 
constraint  (eq.  (75))  also  allows a level of accuracy not possible  with a fixed  step  size 
near  the  upstream  singularity point (U-0), where U begins to change very  rapidly. 

As already  mentioned,  one of the  quantities  to  be  calculated is xM,  the  value of x 
where  the Mach number of the flow is unity. For this  purpose  the Mach number  must be 
computed  at  each  step of the  numerical  solution. For simplicity,  the  Mach  number of 
the flow is based on the  adiabatic  sound  speed of the  gas which is given by 

where P and p are,  respectively,  the  scalar  pressure  and  mass  density (on the axis) 
of the  gas.  Taking  into  account  the  fact  that  mi >> me and Te >> Ti,  expression 
(76) becomes 
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so that  the  Mach  number of the flow on  the axis of symmetry is 

which in t e rms  of U  and T is 

M =  3 u  

(57) 'I2 
(77) 

The  approximate  value of xM is found by a linear  interpolation  in  the  computer  program. 

RESULTS AND DISCUSSION 

Singularity at Maximum Electron  Temperature 

The results of a typical  computer  run a re  shown  in figures 2 and 3. Here p = 0 .1  
and  the  sonic point is located  at xM = 1.09 (the  coordinate  x = z/a is measured  from 
the  center  plane of the  downstream  coil of fig. 1). At the point where  the  dimensionless 
electron  temperature T reached a maximum  value there  was  an overflow  in the  com- 
puter  storage  and  the  computation was automatically  stopped. Such an overflow occurred 
on every  run  and  indicates a singularity point in  equations (48) and (50). It will be re- 
called  that  the  electron  heat flow on the axis is, from  expressions (32a) and  (32b), 

Now the  computer  results show that  the  singularity point (z = zl)  is the point at which Te 
attains its maximum  value; that is, T' goes  through  zero at x = xl. Hence, 
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- > 0  dTe f o r   z   < z l  
dz 

- = o  dTe for  z = z, 
dz 1 

dz I 

so that from  expression (78) 

The  results  (eqs. (79a) to (79c))  imply  that there is a point heat flow source  located at 
z = z  the  existence of which results in the  singularity.  (The  assumption of zero on- 
axis current  density  rules out the  possibility of any distributed  heat flow source.)  The 
accompanying  computer  overflow results from  the  fact  that  the  singularity  forces  the 
term du/dz to  become  indefinitely  large as z approaches z1 from  the  downstream 
side.  The  details of the  singularity  are  presented  in appendix F. 

The  fact  that  the  numerical  solution cannot  be carried  through  the  singularity point 
is not catastrophic  since  Te,max  occurs at the  singularity.  Hence, l / ~ ~ = ,  which is 
the  quantity of interest,  can  indeed be  calculated. 

1' 

Axial Variation of Plasma  Quantities 

Figure 4 shows  profiles of the  normalized ion flow velocity U, the  electron  number 
density N/Nmax (calculated  from eq. (55)), the  applied  magnetic  field BeA/Bmz, and 
the  dimensionless  electron  temperature T and  plasma  potential A V  calculated  from 
the  dimensionless  form of equation (66): 
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At the point where the electron  temperature reaches a maximum  (just  upstream of the 
sonic point) the ion flow velocity is rapidly  increasing, while the electron  number 
density  and  plasma  potential are falling off sharply.  The  figure  also  shows that there 
is still significant  ion  acceleration  relatively far downstream  (e.g., at three coil radii 
downstream of the front  coil,  the ion flow velocity has attained  less than 85  percent of 
its final  value). 

Spatial  Dependence of U and T on p 

Figures 5 and 6 show the behavior of the spatial  variation of U and T as the di- 
mensionless  magnetic field p is varied  over two orders  of magnitude, with the  sonic 
point fixed at xM E 0. (This point corresponds  to the center  plane of the  downstream 
coil of fig. 1). It can be seen  from  these  figures  that the on-axis ion flow velocity and 
electron  temperature  approach  their  final  values  over a shorter  distance as the param- 
eter p is decreased.  Figure 6 shows  that T increases with p. 

Ratio of Final Ion to  Initial  Electron  Energy 

Figure 7 shows  the  ratio of the final  ion  to  initial  electron  energy 1 / ~ ~ ~  and the 
sonic point location x plotted  against  the  parameter B1 for a given  value of the non- 
dimensional  magnetic  field p. By combining a set of such  curves the f i n a l  numerical 
results shown in  figures  8 and 9(a) a r e  obtained. Figure  8  shows  the  variation of the 
ratio of final  ion  to  initial  electron  energy 1 / ~ ~ ~  as a function of sonic point location 
for  various  values of p. Figure  9(a)  shows this energy  ratio as a function of p for 
various  sonic point locations. 

M 

Figure  8  illustrates that l / ~ ~ ~  is a strong  function of sonic point location if the 
sonic point lies between 0.75 and one  coil  radius  downstream of the  center  plane of the 
downstream  coil.  Figures  8 and 9(a) both show that 1 / ~ ~ ~  is a strong function of p 
for p between  and lo-' and sonic point locations less than  one  coil radius. The 
fact that l / ~ ~ ~  is a decreasing function of p for a given  sonic point location  does 
- not imply that 1 / ~ ~ ~  is a decreasing  function of Bmax (see eq.  (51a)). This is be- 
cause  the  ffconstantff  effective  value of the electron  Hall parameter w e ~ e  may well 
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depend  on Bmz. (The  parameter w e ~ e  is "constant"  only in the  sense  that,  for a 
given  system, d(weTe)/dx E 0 for all x.) 

The  curves of figure 9(a) all approach a limiting  value of 1.66 as j3 
becomes  large.  This  asymptote is simply  the  adiabatic  solution of appendix G, that is, 
no electron  heat flow and no electron  energy  loss  term.  The  asymptote  serves as a 
check  on  the  accuracy of the  numerical  results; it also  indicates  the  marked dependence 
of the results on the  electron  heat flow. 

Limitations of Analysis 

Figure 9(b) contains a set of curves  similar  to  those shown  in  figure 9(a). However, 
in  the  calculation of the  curves  for  figure 9(b) the  electron  energy  collision  integral IE 
has been  included  (this  corresponds  to  including  the first te rm on  the  right hand side of 
equation  (50),  which is of order p ). A comparison of figures 9(a) and (b) shows  that 
the  two se ts  of results  are  in  close  agreement  for  small  values of 0, with a maximum 
difference of about 25  percent at p = 0.2. Beyond this point,  however,  the two se ts  of 
results begin to  differ  sharply; at p = 1 no solutions  exist  for xM 5 0.7 in  the  calcu- 
lations  which  include IE, while  solutions  exist  for  the fu l l  range of xM up to about 
j3 = 10 in  the  calculations  which  omit IE. 

From  these  results it is apparent that the  electron  energy  collision  integral IE be- 
comes  an  important  factor  for p 2 0.2. Now IE represents  the  random  kinetic  energy 
lost by the  electrons  to  the  ions (note that IE is negative, eq.  (31b)); this  transfer of 
energy  causes  the  ion  temperature  to  rise.  Then,  since  the  energy  loss  term  becomes 
important  for p 2 0.2, it follows  that  the ion temperature  must  also  become  appreciable 
at this point. However,  the  ion  temperature  has  been  completely  ignored  in  this  analysis 
and  in  particular it has  been  omitted  from  the  electron  energy  collision  integral  itself 
(see  eqs.  (31aj  and (31b)). Clearly  then,  the  analysis is inconsistent  for p 2 N 0.2. (The 
inclusion of IE along  with  the  simultaneous  omission of Ti results in a violation of the 
conservation of energy.)  This  fact, along  with  rough estimates of typical  values of j3 
for low and  high-power  magnetoplasmadynamic a rc s  (e. g.,  eq. (71)), suggests  that  the 
analysis  herein is applicable  to  the  former but not for  the latter case.  The ion temper- 
ature is expected  to  be  important  for  the  high-power  arc. 

2 

N 

N 

There is also a limit  on  the  analysis  for  very  small  values of j3 which results  from 
the  implicit  assumption  that  electron  cyclotron  radii are  small   compared  to a character- 
istic  length of the  system (e. g.,  the  magnetic  field  coil  radius a). This  requirement is 
necessary in order  for  the  electrons  to  cyclotron  within  the  device.  The  limit  can  be 
illustrated by noting that  from  equations (51a) and (63) 
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where a characteristic  electron  cyclotron  radius  has  been defined: 

The  numerator of expression 
distribution  with  temperature 

(82) is simply  the  average  speed  for a Maxwellian  velocity 

Te. max (ref. lo),  while  the  denominator is the  electron 
cyclotron  frequency at B,,. (Although Te, max usually  does not occur at Bmm, eq. 
(82) nevertheless  yields a typical  value of the  electron  cyclotron  radius.) If the  ratio of 
the  characteristic  electron  cyclotron  radius  to  the  coil  radius is to be small, rce/a << 1, 
then  from  equation (81), 

- 2  " 

1 

I -  I 

From  figure 8 the  largest  possible value of 1 / ~ ~ ~  is less  than 32, so that  expression 
(83) becomes 

B >> 8. 5X10m2 (Zy 
The  inequality (84) gives  an  indication of the  lower bound on the  dimensionless  magnetic 
field p. For  the  case  in  reference 5 (argon  propellant),  the  requirement (84) becomes 
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which is certainly  satisfied by the  experiment  (see eq.  (71)). 

Significance of Results 

The  inclusion of thermal conduction  in  the  expansion of a plasma in a magnetic 
nozzle  yields a dramatic  effect. As shown in  figures 8 and  9(a),  the  ratio of final  ion  to 
initial  electron  energy  can  be  increased  more  than  an  order of magnitude  over its adia- 
batic  expansion  value. 

The results of this  analysis  should  permit  one  to  predict  the  final  exhaust  velocity 
and  spatial  variations of the  plasma  quantities of a low power  MPD arc  thruster  as a 
function of upstream  electron  temperature. However,  to do s o  requires that one know 
both  the  location of the  sonic  point  in  the flow xM and  the  value of the  dimensionless 
magnetic  field p. Although reasonable  estimates of xM  and p can  be  made  for a given 
device,  there is at present no precise  method of calculating  these  quantities.  Thus,  to 
compare  the  analysis  herein  with  experiments  requires  very  detailed  diagnostics of the 
experimental  plasma  exhaust.  The only experiment of this  type is that by Bowditch (ref. 
5). Unfortunately,  Bowditch was unable to  obtain  data in the neighborhood of the  sonic 
point because  the  probes  were  destroyed by the  large  heat  transfer in that  region.  Hence, 
presently, no quantitative  comparison  can  be  made  between  the  analysis  herein  and  ex- 
periment,  There  does  appear,  however,  to be qualitative  agreement.  Using  Bowditch's 
data to begin the  numerical  solution  resulted  in  rapid  convergence of the  calculations; 
furthermore,  the  asymptotic  analytic  solution  for  electron  temperature (eq.  (73)) agreed 
relatively  well  with  Bowditch's  measured  value.  Thus,  the  analysis at least  appears  to 
be consistent  with  available  data. 

One important  application of the  results of this  analysis  has  been  indicated.  The 
analysis  leads  to  specifying  the  maximum  range of the  ratio of final ion to  initial  electron 
energy,  Seikel et al. (ref. 6),  indicate how this  information can be used  in a power  bal- 
ance 3 1  a low power dc  MPD a r c  to  set  an  upper bound on both the  possible  efficiency 
as a function of specific  impulse  and  the  maximum  specific  impulse  attainable. 

CONCLUDING REMARKS 

The  axisymmetric  expansion of a thermally conductive  plasma  in a magnetic  nozzle 
has  been  analyzed. As an important  step in the  determination of an  upper bound on  the 
potential  performance of applicable  MPD arc  thrusters,  the  on-axis  ratio of the  directed 
exhaust  energy  to  the  maximum  (upstream)  thermal  energy was  calculated as a function 
of two parameters: (1) the  location of the  on-axis  sonic  point,  and (2) a dimensionless 
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magnetic field p, which  involves the ratio of the maximum  value of the  applied  magnetic 
field to  an  effective  electron  Hall  parameter.  The  results  indicate that thermal conduc- 
tion  can be the dominant  process in the  expansion  inasmuch as the  energy  ratio  can be 
significantly  higher than that of an  adiabatic  expansion.  The  analysis  appears  to be valid 
for  the low power MPD arc ;  the point where it becomes  inconsistent  indicates that the 
analysis  must be  extended by including the ion temperature  to  cover  the  case of the  high 
power MPD arc  ( large p). The  implicit  assumption of small  electron  cyclotron radii 
sets a lower bound  on 6. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, September 16, 1970, 
120-26. 
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APPENDIX A 

SYMBOLS 

Am 

a 

C 

c1 

-c 

ce 

E 

F 

4 

J 

K 

mth  coefficient  in series  for 
dimensionless  electron 
temperature 

effective  radius of magnetic 
field  coil,  m 

adiabatic  sound  speed of gas, 
m/sec 

magnetic f lux  density, T 

mth  coefficient  in ser ies   for  
normalized  ion flow vel- 
ocity 

dimensionless  force law par- 
ameter defined by eq. 
(474 

(47e), T - ~  
parameter defined by eq. 

random  electron  velocity, 
m j s e c  

mth  coefficient  in series  for 
number  density,  m-3 

electric  field  intensity, V/m 

dimensionless  function  de- 
fined by eq. (51b) 

electron  energy  collision  in- 
tegral, N/in -sec 2 

electron  momentum  collision 
integral, N/m 3 

conduction current  density, 
A/m2 

constant  defined by eq. (16) 

Boltzmann  constant, 
1 . 3 8 0 5 ~ 1 0 - ~ ~  J/K 

length  defined by fig.  10,  m 

Mach  number of flow 

electron rest mass, 
9 . 1 0 9 ~ 1 0 - ~ ~  kg 

ion rest   mass,  kg 

number  density,  m-3 

"of the  order of" 

scalar  pressure, N/m 

heat  flow,  J/m  -sec 2 

electron  charge, 
1 .602~10- l9 C 

radial  coordinate,  m 

unit vector  in  r-direction 

temperature, K 

time,  sec 

normalized ion flow velocity 

flow velocity,  m/sec 

final  ion flow velocity,  m/sec 

plasma  potential, V 

total  particle  velocity,  m/sec 

defined by eq. (74) 

dimensionless axial distance 

axial coordinate,  m 

dimensionless  force law 

2 

parameter 
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P 

Y 

‘ A x  

E 

€0 

8 
6 

e 

V ei 

dimensionless  magnetic  field 
defined by eq. (51a) 

dimensionless  force law 
parameter 

step  size  for  numerical  anal- 
ys is 

diffusion  Mach  number 

permittivity of free  space,  

F/m 

azimuthal  coordinate,  radians 

unit vector in 8-direction 

permeability of free  space, 

H/” 

effective  electron-ion  momen- 
tum  transfer  collison  fre- 
quency, s e c  -1 

x dimensionless  force law 
parameter 

P mass  density, kg/’mV3 

7 dimensionless  electron  tem- 
pe rat u r  e 

w electron  cyclotron  frequency, e 
rad/sec 

Subscripts : 

e e le ct  ron 

ext  applied  field 

i ion 

m  step  number in numerical 
analysis 

max  maximum  value 

r radial component 

Z axial component 

0 starting value for  numerical 
solution 

8 azimuthal  component 

Superscripts: 

( 4  mth-order  term with respect 
to r 

* z* is plane  where  ions are 
created 

ind induced  field 

M xM is value of x  where Mach 
number is unity 
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APPENDIX B 

THE APPLIED MAGNETIC FIELD 

A  typical  magnetic  field  coil  configuration of MPD a r c s  is shown in  figure 10. It is 
assumed  here  that  the two field  coils are closely  wrapped  and  sufficiently  narrow so that 
the  magnetic f lux  density  near  the axis can  be  accurately  determined on the  basis of two 
equivalent  single  turn  loops.  Each  such  loop carries a current  equal  to  the  current  in 
the  actual  coil  multiplied by the  number of turns of the  actual  coil,  and has a radius  (the 
dimension a of fig. 10) such that the  magnetic f lux  density of the two loops is approxi- 
mately  equal  to  that of the  actual  coils, at least near  the  centerline. 

erence 5. The  magnetic flux density  on  the  centerline  due  to  the external coils, Bext, 
is then (see ref, 11) 

For  simplicity, it is assumed that a = Q in figure  10, as is the  actual  case  in ref- 

where Bmax is the  maximum  value of the  applied  magnetic  field on the  axis,  occurring 
midway  between  the  coils, at z = - (Q/2) = - (a/2).  Substituting  x = z/a  into  express- 
ion (Bl)  yields 

Bmax {(I +x2)-3 /2  + [l + ( l  +x?] ] - 3/2 
Be&) = 

16 

and  then 

dBext(X) - 5 6  
" dx 16 Bmax  {-3x(l - 3(1 + X )  [1 + (1 +x)  '1 - 5/2} (B3) 

The  analytic  asymptotic  solution of equation (50) requires  the  evaluation of the  ex- 
pressions  in  braces in equations (B2) and (B3) for  large x. The  binomial  expansions of 

F(x) = (1 + [l + (1 +x)2] 
- 3/2 
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and 

- 5/2 "- dF(x) - 3x ( 1 + x  2)-5/2 - 3(1 +x) [t +(1 +x)2] 
dx 

are, respectively, 

and 

34 



APPENDIX C 

MAGNITUDE OF FIELD QUANTITIES 

Magnetic  Field 

The induced magnetic  field is governed by the  equation 

- 
vxEind = /lo J 

the  z-component of which 

"since 8/38 0.  Integrating  equation (C2) with respect  to r yields 

The arbitrary  function  h(z) in expression (C3) must  vanish  identically in order  that 

'8, ind be  finite at r = 0. Hence,  since J, = O(r), assumption (6) ,  it  follows  that 

The  8-component of the  total  magnetic  field is then 

since  Be, ext = 0 by symmetry  (see appendix B). 
The  divergence of the  total  magnetic  field is 

v .  g = o  

from which 

- l a  - (rBr) -I- - aBZ = 0 
r ar dz 
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since  a/% E 0. Integrating  equation (C7) with respect  to r yields 

where  the  arbitrary  function g(z) must  be  identically  zero  in  order  that  Br  be  finite  on 
the axis. Hence,  to first order  in r ,  

dBz@,  z) 
B r = -  (;) 

dz 

so that 

and 

Electric  Field 

Because of the  assumption of steady-state  conditions  the  curl of the  total  electric 
field is given by 

V x % O  (C 12) 

Hence, E' can  be expressed  in  terms of the  gradient of some  scalar function 

E 1 -V+ 
-c 

the  8-component of which 
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Then  since 8/86 = 0, 

Eo E 0 

The  divergence of the  total  electric  field is 

Ne) 

from which 

since a /a0  = 0 .  Integrating  equation (C17) wi th  respect to r ,  and  recognizing that Er  
must be finite at 1: = 0, yields 

Hence,  to first order  in r ,  

since NIo) = NLo), assumption (5) Then 

E(') = 0 r 

and 
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Conduction Current  Density 

With the assumption of steady-state  conditions the conservation of charge  equation 
be comes 

from which 

since a/aO = 0. Substituting  the  r-expansions for Jr and Jz into  equation (C23), and 
using  the  assumption JLo) = 0, yields 
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APPENDIX D 

THEELECTRONHEATFLOW 

The  material  in  this appendix is based  on  reference 7. Equation (5.4) of that  refer- 
ence is the  equation for the  species'  heat flow in a general  gas  system. For the  case of 
electron  heat flow in a fully  ionized  gas,  the  equation  becomes 

where .', = 7 - ce, with 7 being  the  total  particle  velocity,  and  where 6 [(1/2)mectze] 
and 6(meZe) are,  respectively,  the  total  electron heat flow collision  integral  and  the 
total  electron  momentum-  collision  integral  for  elastic  collisions  (the  6-notation is that 
used  in ref. 7). In equation  (Dl)  the traceless  pressure  term  has been  ignored, in accord 
ance  with  assumption (3). Equation  (Dl) is based on the  "transport  approximation"  to 
the  Boltzmann equation. This  approximation is applicable  to  plasmas which satisfy two 
conditions: (1) the  species'  distribution  functions a re  close  to  their Maxwellian forms, 
and (2) the  small non-Maxwellian par ts   are  slowly  varying  functions of the  time and spa- 
tial coordinates  in  the  sense  that  their  characteristic  times  and  lengths  are  much  larger 
than  the  corresponding  collision  times o r  mean  free path lengths. Condition (1) has al- 
ready  been  assumed  in  the  calculation of the  collision  integral  coefficients  in  the  text. 
Insofar as equation  (Dl) is concerned, and  in view of assumptions (1) and (3),  condition 
(2) can be replaced by the  requirement  that  the  characteristic length for  the  variation of 
the  electron  heat  flow, ae, be  large  compared to  the  electron  mean  free path  length. 

The  derivation of the  collision  integrals  in  equation  (Dl) is extremely  tedious and 
only the  results wi l l  be  given here. To first  order  in  the diffusion Mach number, E ,  and  in 

the  dimensionless  heat  flows Qe and - ~ Qi , the  electron  mom- 
Pe(2kTe/me) 1/2 Pi(2kTi/mi) 1/2 

entum  collision  integral is (eq. (3.42) of ref. 7) , 

6(meze) = meNevei [- (ui - u -e ) +- - 

where  the  assumption Qi/mi << Qe/me  has  been  used. To the  same  level of accuracy 
the  electron-electron  heat flow collision  integral is (eq. (3.50) of ref. 7) 
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where a term involving  the "Coulomb logarithm"  has  been  omitted,  with  the  condition 
that  In RLi >> 1/2. Typical  values of In Rei,  which  depends on Te and Ne, a r e  
about 10 (see ref, 12). The  electron-ion  heat flow collision  integral is (eq. (3.45) of 
ref. 7) 

where  z' is-a dimensionless  number which is dependent  on the  interparticle  force law 
(the y used  here is the  z of ref. 7). The  total  electron  heat flow collision  integral is 
given by the  sum of equations (D3) and (D4). Then from  equations (D2) to (D4) the  right- 
hand side of equation (Dl) is 

I'= - (?) [5YPe(ii - ie) + zxCJe] 

where 

21/2-  7 x=5y+l+""-' 
5 2 

The  z-component of equation (Dl) is, to  zero  order in r ,  

where  equations  (C5),  (ClO), and (6) have  been  used.  Hence,  from  equation (D7), 

The  8-component of equation (Dl) yields 
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since 3/36 = 0, while  the  r-component  yields 

Substituting  equation (D10) into (D5) gives 

L 

Substituting Ir from  equation (D5) into (D11) gives 

I, = p e i )  B Qe, r - (+) 
weBz 

- !xEy--P u - ue B "ei 

B, we 
e (+i - ') 

Finally,  substituting  equation (D12) into (D9) yields 

2 - l  'e B 

e e  

Q e , r = ( - ) ( k ) F w e ~ e ) 2  +S2%] {-U--- akTe 

B2, 
m w B, ar 

Now, u(O) = 0 in  order  for  the  limit  lim u 8 to  exist;  similarly, T r )  = 0 in order 
A 

e, 6 r-0 e ,*  
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no loss of generality is incurred by using  the  asymptotic  expansion (eq. (52b)). Simi- 
larly,  let 

J 
OQ 

7 = x  -?'2 A.x-j 
J 037) 

j =O 

where 

y >0,  A. f 0 2 -  039) 

Note from  expression (E10)  that y3 is taken  to  be  positive  since N-0 as X-CO, which 
is obvious from  physical  considerations.  The  result 7-0 as x - ~ ,  which is not as 
obvious,  can  be shown by reference  to  equation (55): 

If T does  contain a zero  order  term, then  clearly y2 = 0. Then  substituting  equations 

(E6) to (E8)  into (E l l )  yields,  to  lowest  order in x-', 

-Y3- 1 
(terms of order x-") - y3AoDox = o  

where 

m - > y 3  + 2  

Clearly,  since  the last term  in equation ( E 1 3  is the  dominant  one, at least one of the 
factors y 3 ,  A,, Do must  vanish, but this is not possible  in view of equations (E9)  and 
(ElO).  Hence, a contradiction  has  been  reached  and it follows that T cannot  contain a 
zero  order  term. The  expansion (E7) then  becomes 
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j =O 
where now 

To determine  y2,  the  expansions (E6) and (E14) are substituted  into  equation (48) 
which yields,  to  lowest  order  in x-', 

2 -2Y2-2  -y2-"-2 
r2(Y2 + 2)Aox + 6n(n + l)AoBnx + 9n Brix 2  2  -2n-2 = 

where it has  been  assumed  that Bn is the first nonzero  coefficient beyond Bo in  the 
expansion for U. If y2 < n,  then  clearly  the first term in  equation (E16) is the  lowest 
order  term, which requires 

which is not possible  in view of the  conditions  in  equation  (E15).  Next, if y2 > n,  then 
the last term in  equation (E16) is the  lowest  order  term, which requires 

Bn = 0 

but this  case  must  also be ruled  out  since Bn was stipulated  to  be  nonzero.  The re- 
maining case is y2 = n  which makes all the  terms  in equation (E16) of the  same  order, 
and  yields 

(n + 2)A0 + 6(n + l)AoBn + 9nBn = 0 2 2 

The  two  solutions of equation (E17) are 

A, = - (A).., - 3Bn 
n + 2  



It is not possible  to  explicitly  determine  the value of n  inasmuch as equations (50) and 
(55) provide no information in this  regard.  However, by comparing  the  calculated val- 
ues of kTe/q with the  measured  values of reference 5, the  fvchoicevv B1 f 0 can  be 
shown to  be  the  best one. Assuming  the first solution  in  equation (E18) and  considering 
only the  lowest  order x-dependent terms,  the  expansions (E6) and (E14) become, re- 
spectively, 

U E 1 +B,x -~  

T z Aox-n = - (-) 3n Bnx-n 
n + 2  

so that 

T 2 (-)(I 3n - u) 
n + 2  

and 

Substituting  equations (67b) and (68) into  (E19) gives 

3 X_ 23.4 (p) volts 
9 n + 2  

at the  survey  plane of reference 5. Then,  for  instance, 

kTe - = - 7.8 volts  for  n = 1 

" kTe "_ 11.7 volts  for  n = 2 
9 

Since n/(n + 2) is a strictly  increasing  function of n, it is clear that the  calculated 
values of kTe/q  increase  with  increasing  values of  n. The  measured  value of kTe/q 
is 
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kTe - = 5.2 volts 

so that clearly  the  choice  n = 1 is the  most  suitable one.  Note that  the  second  solution 
in  equation (E18) is not allowable  since  equation (E 11) is, to  lowest  order  in x- using 
equations  (E6),  (E8),  and  (E14), 

I- - 
Do [ 3 n ~ ,  + (n + y3)A0] = 0 

which becomes upon substitution of the  second  solution in equation  (E18), 

-3Bny3Do = 0 

A contradiction  has  thus  been  reached  since  Bn,  y3,  and Do are all nonzero.  Hence, 
the  expansion (E14) becomes,  with y2 = n = 1, 

which has the  same  form as the series assumed  in  equation  (52a). 
Finally,  substituting  the first solution in equation (E18) into (E21) gives 

Note that the  result (eq.  (E23)) is independent of both  n and Bn. Hence,  the  expansion 
(E8) becomes 

j =O 

which is identical  in  form  to  the series (eq.  (52c))  inasmuch as the first coefficient  in 
that series is shown to  be  zero (eq.  (57)). 
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APPENDIX F 

THE SINGULARITY POINT 

As mentioned  in  the text, the  singularity point can be traced  to  the  fact  that  the  term 
du/dz becomes  indefinitely  large as z approaches z1 from  the  downstream  side (i.e., 
a s .  z - z l ) ,  where z1 is the coordinate  where  the  electron  temperature  attains  its 
maximum  value.  To see this,  reference is made  to  equations (50) and (55). Noting that 

+ 

lim T' = 0 (through  negative  values) + x-x 

and 

lim T" < 0 + x-x 1 

equation (50) becomes,  in  the  limit as x-xl, + 

where  it has been assumed  that U remains  finite as x - xl. + Now, if lim Ut > 0 ,  

then  from  expressions (F2) and  (F3)  it  follows  that 

+ x-x 

lim (y) < o  
+ 

X-X1 

Then,  from  expressions (Fl) and (F4) it  follows  that 

lim ($) = +a, 
+ x-x 
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Hence,  either 

or 

lim U = 0 (through  positive  values) 
X-X1 + 

or  both (F6) and (F7) occur.  However, it can  be shown from  equation (55) that (F7) can 
only occur if (F6) also  occurs. Equation (55) is, in  the  limit as x - xl, + 

Hence, if lim U = 0, it follows  that 
+ x-x 

lim Ut = -1.03 
+ x-x 1 

since  lim Nt < 0. Hence,  in any event, 
+ x-x 

lim U'= +m 
+ x-x 

The  fact  that Ut increases indefinitely 
computer  storage.  Several of the computed 

as x - x1 + results in an  overflow  in  the 
results show that U actually  goes  through 
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APPENDIX G 

THE  ADIABATIC  SOLUTION 

In the  adiabatic  expansion  there is no heat flow and no energy loss term. Under 
these  conditions  equation (28) becomes 

3 dPe 5 d In N - u p ”  
2 dz 2 peu dz = O 

Equation (2 5), which remains unchanged, 

du dPe miNu - +- = 0 
dz dz 

can be written as 

d l n N -  d In kTe miU du 
”- 

dz  dz kTe  dz 
” - 

Combining  equations (G2) and (G4) yields 

2 dz  dz 

which in  nondimensional  form is 
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The  solution of  equation (G6) is simply 

3 2   3 2  T +- U = constant = T~~ +- 
5 5 u1 

From  equation (G6) it follows that 

u1 = u(x,) = 0 

or  

U'(X1) = 0 

the latter implying U is a minimum at xl, or  both (G9) and (G10) occur. In any event, 
it is permissible  to  neglect U1 in  equation (G8), so that,  finally, 2 

5 
- 3  
" 

The  results shown  in figure 9(a) were obtained  using  equation (50) with the first term 
on the right side omitted, that is, no energy loss term,  

AS f j  - 00, it follows  from  equation (G12) that 

T' +- UU' - 0 (for all x) 6 
5 
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in order  for the term containing /3 to  remain  finite. The consequence  (eq. (G13)) is  
simply  the  adiabatic equation (G6), of course, and it  follows that the  asymptote of figure 
9(a) is simply the adiabatic  solution  given by equation (G11). 
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@Magnet ic  f ie ld  coi ls@ 

Figure 1. - Plasma  expansion in a magnetic  nozzle. 
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Figure 2. - Dimensionless  on  axis  e lectron  temperature T as func t ion  of  dimensionless 
distance  x  for  aimensionless  magnetic  f ield p = lo-' and  sonic  point  location 
XM = 1.09. 
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Figure 3. - Normalized  on  axis  ion  f low  velocity U as f u n c t i o n  of  dimensionless  distance 
x for   d imensionless  magnet ic  f ie ld p = 10-1 and  sonic  point  location xM = 1.09. 
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-9K '"Normal ized  on axis i o n  flow  velocity, U = u/u, 

,- Dimensionless  on  axis  plasma  potential, AV =- 
mi&/2q 

.- Normalized on  axis  electron 

v - v, 

number  density,  N/Nmax 

I on  axis 
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,C Dimensionless  on  axis  electron 
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Dimensionless  distance,  x = zla 

Figure 4. - Axial  profiles of plasma  properties  for  dimensionless  magnetic  field 
p = 10-1 and  sonic  point  location xM = 1.09. 
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Figure 5. - Normalized  on  axis  ion  flow  velocity U as func t ion  of dimensionless  distance 
x with  dimensionless  magnetic  field p as  parameter.  Sonic  point  location x"0. 
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Figure 6. - Dimensionless  on  axis  electron  temperature T as  function  of  dimension- 
less distance x with  dimensionless  magnetic  field p as parameter. Sonic  point 
location, xM 0. 
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Figure 7. - Ratio of f inal  ion to  init ial  electron 
energy  UT,,,^^ and  sonic  point  location xM 
as function of parameter B1 for  dimension- 
less magnetic  field p = 5 ~ 1 0 ~ ~ .  
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Figure C. - ,&at!o 01 final  ion to i.titial electron energy UTmax as function of sonic point location xM with dimensionless  magnetic  field p as parameir- 
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Figure 10. -Typ ica l   con f igura t ion  of MPO arc  thrusters .  
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